DESIGN OF PLANT FOR THE PRODUCTION OF 72000 TONNES/ YEAR OF 2- ETHYLHEXANOL FROM PROPYLENE AND SYNTHESIS GAS


DESIGN OF PLANT FOR THE PRODUCTION OF 72000 TONNES/ YEAR OF 2- ETHYLHEXANOL FROM PROPYLENE AND SYNTHESIS GAS

 EXECUTIVE SUMMARY 

    A critical approach is attempted in this project work at realizing the design objectives for 

    a process plant. Design, being an iterative procedure with a route of procession from the 

      input or feed to the stated objective(s), amidst intervening constraints, requires a careful, 

      well- thought- out, comprehensive specifications of the defined or desired requirements. 

      The  stated  objective  in  this  case  is  the  design  of  a 72000  tons/year  capacity  of  a  2- 

      EthylHexanol  (C8H18O)  Plant. While  many  processes  exist  at  producing  2- 

      EthylHexanol (2- EH),  such  as  the  Acetaldehyde  Route  and  others  developed  by  Shell 

      Corporation  etc,  the  Oxo  Process  route  utilizing  propylene  and  synthesis  gas as  feed 

      components was the given route for this design work. However, important modifications 

      were  implemented to the process description  for effective process optimization, such as 

    to  improve  the  conversion  of  efficiencies  of  process  equipment  by  aid  of  recycle 

      processes. 

      The  oxo  synthesis  began by  reacting  propylene  feed  and  synthesis  gas  (CO  +  H2)  in  a 

      Cobalt Carbonyl  (Co2(CO)8)  catalyzed  hydroformylation  reaction.  The  propylene  feed 

      input of 198.3275 kmols/hr was made up by three streams; Fresh Feed of 152.9 kmols/hr, 

      recycle  streams  from  cracking  unit  of  42.9775  kmols/hr,  and  stripped  propylene  from 

      Gas- Liquid Separator 2 of 2.45 kmols/hr. 

      310.709  kmols/hr  of  synthesis  gas  (CO  +  H2)  was  supplied  together  with  218.5415 

      kmols/hr excess Hydrogen for use in latter processes. The hydroformylation reactor was 

                                                iii 

     at operating temperature and pressure of 130°C and 350 bar. The design temperature and 

      pressure however was heuristically accepted as 1.1 times of this value. 

      The  main  product  of  the  oxo  reactor was n- butyraldehyde  with  molar  flow  rate  of 

      141.6840  kmols/hr.  A  side  reaction  produced iso- butyraldehyde  of  36.1750  kmols/hr, 

      with  a  selectivity  ratio  of  4:1.  Alcohols  formed  from  the  hydroformylation  reaction 

      included n- butanol (9.0437), and iso butanol of 1.5073 kmols/hr. Other reactions occured 

    to a small extent yield 136.0750 kg of high molecular weight or heavy end compounds, 

      representing 1 weight % of the butyraldehyde/ butanol mixture. 

    A  cleaner  technology  approach  to  pollution  control  was  adopted  for  the  plant  design. 

      Hence,  the  need  for  thorough  separation  processes  and  purge  streams  to  remove 

      extraneous components. From the hydroformylation reactor, the products were separated 

      with  the  first  Gas- Liquid  Separator  (GLS  1),  which  separated  the  aqueous  phase  of 

      cobalt  and  water  from  the  organic  phase  components  in  a  process  referred  to  as cobalt 

      plating. The cobalt was regenerated as an active catalyst, to save cost, and sent back to 

    the  oxo  reactor  for  further  reaction.  The  organic phase  of  GLS-1  goes  for  further 

      separation in a second GLS which stripped the initial reactants (propylene and synthesis 

    gas)  for  recycle  back  to  oxo  reactor.  Liquid  phase  of  n-/iso- butyraldehyde,  alcohols, 

      heavy ends and remnant water exits the GLS 2 operating at 55°C and 1 bar. 

    A vital separation technique was involved proceeded from GLS-2. A distillation column 

    1 (DC 1) with 36 trays and made of Ferritic Stainless Steel 430 is employed which gave a 

    top product of n-/iso- butyraldehyde and bottoms of alcohols etc. Further distillation was 

      employed to separate normal and iso- butyraldehyde in DC 2. The McCabe Thiele- Plot 

                                                iv 

     is  of  stream  properties  of  DC  2  indicated  the  number  of  required  trays  as  42.  Tray 

      thickness and spacing of 3 mm and 457.2 mm was employed for both the enriching and 

      rectifying  section  of  the  25.89  m  heighted  DC  2. Sieve  hole  pitch  was 15mm  while 

      diameter  was  5mm. Flooding  rate  of  80%  was  computed  for  both  sections  and  it  was 

      ratified  that  there  was  no  flooding.  The  Murphee  plate  efficiency  and  overall  column 

      efficiency  was  within  acceptable  ranges (> 80  %).  Log  Mean  Temperature  Difference 

      (LMTD) for the partial condenser was 31.51°C. Mechanical design specifications for the 

    DC  2  construction  were  computed  in  this  report. The  top  product of  DC  2  was  mainly 

    iso- butyraldehyde  (35.704  kmols/hr),  while  the  bottoms  was  mainly  n- butyraldehyde 

      (141.304 kmols/hr) required for 2- EH production.  

    To maximize output of 2- EH, the iso- butanal obtained from DC 2 operation was routed 

      through  a  cracking/  conversion  process  to  produce  original  reactants.  The  6461  L 

      capacity cracker unit had operating specifications of 275°C and 1 bar, but designed at 1.1 

    bar  and  302.5  °C and  made of  Low- Alloy  Steel  material  for  good  heat  retention.  A 

      recycle process was proposed for the cracker unit which had a limited conversion yield of 

      80%. Aldol condensation with 2 % w/w aqueous NaOH (9.2 kmols/ hr) took place on the 

    n- butanal product from DC 2. The Aldol condenser reactor produced 69.946 kmols/hr of 

    2- Ethyl  hexanal,  an  intermediate reactant  for 2- EH. (Improved recycle process  for the 

    90%  Efficient  Aldol  Condenser  was  also  proposed).  Subsequently,  2- Ethylhexanal 

      undergoes hydrogenation to give 69.247 kmols/ hr of 2- Ethyl hexanol, recovery rate of 

      99.8 % and 99% wt purity. 

                                                v 

       Process  design for  the  2- EH also  involved  the  control  and  instrumentation  of  the 

      processes and equipment to achieve the design objectives and safety. Control of operating 

      conditions  of  the  oxo  reactor  was  described,  with  preferred  controller  as  Proportional 

      Integral  Derivative  (PID)  Controller. A  PID  controller was  chosen  for  operation  to 

      eliminate the challenge of runaway temperature increase by the derivative component and 

    the  offset  error  by  the  integral  component. Simulation  results  suggested  the 

      hydroformylation (HFR) vessel  temperature  was  kept  at  safe  operating  condition  using 

      coolant  stream  and  a  Temperature  controller  (TC)  with Controller  Gain Kc =  2  and 

      Settling Time Ti = 5min. A controller scheme was also designed for level control to avoid 

    the splashing of the reactants and prevent the mixing of pure tops from the bottoms. The 

      proposed controller was proportional controller which can tolerate offset. This controller 

      allows  offset  depending  on  the  magnitude  of  the  controller  gain  which  is  the  only 

      controller  parameter  to  be  varied  in  this  case. HFR  liquid  level  was  kept  at  safe  fill  of 

    85% using  a  bottom product valve (BPV) and a  PID  level controller (LC) with  Kc  =  2 

    and Ti = 10min. The mass flow rates of propylene stream and synthesis gas stream going 

      into hydroformylation reactor (HFR) were controlled by propylene stream valve (PV) and 

      synthesis  gas  stream  valve  (SGV)  respectfully  using  a  PID  controller  of  0.1  Kc  

      (Controller gain) and 5min integral time for both streams. 

    An acceptable design must present a process that is capable of operating under conditions 

      which will yield a profit. A simple costing procedure is carried out for the 2- EH Plant to 

      determine if the design is feasible economically or not based on certain estimates.

                                                vi 

       Estimates  were  prepared  using data  and  Chemical  Engineering  cost  index  method in 

      Literature, considering Port Harcourt (Rivers State, Nigeria) as the location of the plant. 

    Old  cost  information  was  obtained and  extrapolated  using  the  Index  Method  to  the 

      present  2012  costs.  These  costs  were then  converted to  Naira  using  appropriate  foreign 

      exchange rates. 

      The Purchased Cost of Equipment (PCE) was valued at #428,171,790, while the Physical 

      Plant  Costs  (PPC)  or  direct  costs  was  obtained  by  the  factorial  costing  method  at  3.4 

      times  PCE,  and  valued  at #1,455,784,086.  Indirect  costs were  the expenses which  are 

    not  directly  involved  with material  and  labor  which  included  design  and  engineering, 

      contractor’s fee etc, and were valued at #650,602,838.70k. The Fixed Capital Investment 

      (FCI)  was  obtained  by  summing  up  the  direct  and  indirect  costs,  and  valued  at 

        #2,106,386,925.70k. The Working Capital was 15% of the FCI and both gave the Total 

      Capital Investment of #2,442,344,964.81k. 

      The start- up cost, or for first- run of plant for production, was valuated at 15% of TC1. 

      With a selling price at #130.56k, the 72,000 tons/year 2- Ethylhexanol plant is expected 

    to have a net profit of ##5,146,221,476. 

      Finally,  procedures  for  safe  operation  and  start- up  of  the  72000  tons/year  2- 

      Ethylhexanol Plant were documented. 

                                                vii 

                                           CONTENTS 

      Title Page          i 

      Letter of Transmittal         ii 

      Executive Summary         iii 

      Contents          viii 

      List of Tables          xvii 

      List of Figures          xix 

      Abbreviations           xxi 

      CHAPTER ONE:   INTRODUCTION      1

        1.1 Background      1 

        1.2 2- Ethylhexanol Properties and Uses   4 

         1.2.1 Physical and chemical properties  4 

         1.2.2 Environmental fate    4 

         1.2.3 Uses of 2- Ethylhexanol   6 

                                              viii 

       CHAPTER TWO:   LITERATURE REVIEW     8 

       2.1 Choice of Synthesis Route     8 

        2.1.1 Acetaldehyde route     8 

        2.1.2 Aldox process      9 

        2.1.3 Shell process      9 

        2.1.4 Oxo process      10 

       2.2 Specifications, Analytical, and Test Methods  14 

       2.3       Process Selection      15 

       2.4 Process Description      18 

        2.4.1 Problem statement      18 

        2.4.2 The process      18 

        2.4.3 Feed specifications      20 

        2.4.4 Utilities      20 

       2.5 Scope of the Design Work      20 

        2.5.1 Process design      20 

        2.5.2 Chemical engineering design    21 

        2.5.3 Mechanical design      21 

        2.5.4 Control system      21 

        2.5.5 Cost estimate      21 

       2.6 Data Supplied       22 

        2.6.1 Chemical reactions      22 

        2.6.2 Boiling points at 1 bar     23 

                                                ix 

         2.6.3 Solubilities of gases at 30 Bar in the liquid   

         phase of the first gas-liquid separator   23 

        2.6.4 Vapor-liquid equilibrium of the butyraldehydes  

         at 1 atm       24 

      CHAPTER THREE:  PROPOSAL       25 

   3.1 Process Description      25 

        3.1.1 Hydroformylation reactor    25 

        3.1.2  Gas liquid separator 1 (GLS-1)   28 

        3.1.3 Gas liquid separator 2 (GLS- 2)   28 

        3.1.4 Distillation column 1 (DC 1)    29 

        3.1.5  Distillation column 2 (DC 2)    29 

        3.1.6  Cracker unit      29 

        3.1.7  Aldol reactor      30 

        3.1.8  Hydrogenation reactor    30 

       3.2 Miscellaneous Equipment      31 

                                                x 

       CHAPTER FOUR:  PROCESS DESIGN BALANCES    34 

       4.1 Material Balance      35 

        4.1.1 Hydrogenation      38 

        4.1.2 Aldol reactor      39 

        4.1.3 Distillation column (DC 2)    40 

        4.1.4 Cracker      43 

        4.1.5 Distillation column (DC) 1    44 

        4.1.6 Oxo reactor      45 

        4.1.7 Gas- liquid separator (GLS) 1    50 

        4.1.8 Gas- liquid separator (GLS) 2    53 

        4.1.9 Material balance analysis    53 

       4.2 Energy Balance      56 

        4.2.1 Hydroformylation reactor    56 

        4.2.2 Cracker      64 

    4.2.3 Energy balance analysis    68 

      CHAPTER FIVE:  EQUIPMENT SCHEDULE AND P&ID   69 

   5.1 Design Conditions and Physical Properties of Oxo Reactor 69 

       5.2 Design Conditions and Physical Properties of Cracker 71 

       5.3 Design Conditions and Physical Properties of  

        Aldol Condenser      73 

                                                xi 

        5.4 Design Conditions and Physical Properties of  

        Hydrogenation Reactor      74 

   5.5 Capacity of Storage Tanks     75 

         5.5.1 Propylene feed storage tank    75 

         5.5.2 Synthesis gas storage tank    77 

         5.5.3 Hydrogen gas storage tank    77 

         5.4.4 2-Ethyl hexanol product storage tank   78 

       5.6 Materials of Construction     79 

      CHAPTER SIX:  CHEMICAL ENGINEERING DESIGN   84 

       6.1 Plate Hydraulics      91 

        6.1.1 Enriching section      91 

        6.1.2 Stripping section      102 

       6.2 Condenser Preliminary Calculations    111 

       6.3 Summary of Chemical Engineering Design of DC 2  119 

       6.4 Notations       119 

                                              xii 

       CHAPTER SEVEN:  MECHANICAL DESIGN OF N- AND ISO-  

        BUTYRALDEHYDE DISTILLATION COLUMN 124 

              7.1 Specification Details      124 

               7.1.1 Shell       124 

               7.1.2 Calculation of stresses    126 

               7.1.3 Design of skirt support    132 

                                  7.1.4 Design of skirt bearing plate    136 

       7.2 Mechanical Design for the Condenser   140 

        7.2.1   Shell side       140 

        7.2.2 Tube side       145 

      CHAPTER EIGHT:  INSTRUMENTATION SCHEDULE AND  

        CONTROL SCHEME     151 

       8.1  Background       151 

       8.2 Control of the Reactor System Temperature   152 

        8.2.1 Sensor       154 

        8.2.2 The controller      155 

        8.2.3 The control valve     155 

        8.2.4 The cooling process     157 

       8.3 Control Scheme for the Liquid Level within the Reactor 158 

                                              xiii 

       CHAPTER NINE:  COST ESTIMATION AND ECONOMIC   

        EVALUATION OF THE PROCESS   160 

       9.1 Background       160 

       9.2 Cost Estimate of Plant Equipment    161 

       9.3 Estimation of Purchased Costs of Equipment (PCE)  162 

       9.4. Estimation of Total Investment Cost    171 

        9.4.1 Direct costs      171 

        9.4.2 Indirect costs      173 

       9.5 Estimation of Total Production Cost    175 

       9.6 Profitability Analysis      180 

      CHAPTER TEN:  PLANT START- UP AND OPERATING    

        PROCEDURES      182 

       10.1 Background       182 

       10.2 General Principles      185 

       10.3 Start- Up       190 

        10.3.1 Preparation prior to initial start-up   191 

         10.3.1.1 Operational check-out   192 

         10.3.1.2  Hydrostatic testing   193 

         10.3.1.3 Final inspection of vessels  196 

         10.3.1.4  Flushing of lines   197 

                                              xiv 

          10.3.1.5 Instruments    201 

         10.3.1.6  Acid cleaning of compressor lines 202 

         10.3.1.7 General notes for dry-out 

            and boil-out    202 

         10.3.1.8  Catalyst loading   203 

         10.3.1.9 Tightness test    203 

        10.3.2 Normal start-up procedures    204 

         10.3.2.1  Prestart-up check list   205 

         10.3.2.2  Make area safe   206 

         10.3.2.3  Utilities commissioning  206 

         10.3.2.4.  Establish flow in the unit  206 

         10.3.2.5 Adjust operation to obtain quality 207 

       10.4 Performance Trails      207 

       10.5  Safety Practices      208 

       10.6 Shut Down and Emergency Procedures   209 

        10.6.1 Scheduled shutdown     210 

        10.6.2 Maintenance shutdown    211 

        10.6.3 Emergency shutdown     212 

        10.6.4 Reactor trips      212 

        10.6.5 Shutting down to a standby condition   212 

                                                xv 

         REFERENCES          213 

      APPENDICES          218 

      APPENDIX A: Mechanical Drawings for Distillation Column (DC) 2  219 

      APPENDIX B: Material Safety Data Sheet (MSDS) for 2- EthylHexanol  240 

      APPENDIX C: Simulation Graphs for Control Scheme of Oxo Reactor  248 

      APPENDIX D: Commissioning System File (Abridged)    254 

      APPENDIX E: Possible Problems, Analysis and Appropriate Action  267 

                                          CHAPTER ONE 

                                          INTRODUCTION 

      1.1 Background 

      2-Ethylhexanol (2-EH) is a clear, colourless liquid with a characteristic odour, which has 

      been  described  as  sweet  and  floral  (Genium,  1999;  WHO,  1993)  and  as  intense  and 

      unpleasant  (HSDB,  2004;  Verschueren,  2001).  This  compound  occurs  naturally  in  food 

      (e.g., corn, olive oil, tobacco, tea, rice, apricots, plums, apples, nectarines, tamarind grapes, 

    and  blueberries)  and is  also  used  as  a  flavor  additive  in  foods  (WHO,  1993).  In  the 

      atmosphere,  2-ethylhexanol  occurs  as  a vapor.  This  compound  is  combustible  and  will 

      react violently  with  oxidizing  materials  and  strong  acids.  2-Ethylhexanol is  soluble  in 

      organic solvents but only moderately soluble in water. 

      The chemical formula, structure, registry numbers, synonyms and trade names for 2-ethyl 

      hexanol are provided in Table 1 (NIST, 2003). 

      2-Ethylhexanol is formulated by petrochemical synthesis (WHO, 1993). 2-Ethylhexanol is 

      also a valuable intermediate in the chemical and petrochemical industry. It ranks after the 

      lighter  alcohols  (methanol  to  butanol)  as  the  most  important  synthetic  alcohol. The  main 

      outlet for 2-ethylhexanol (2-EH) is the production of phthalate plasticizers, such as di-octyl 

      phthalate (DOP), which are used in the manufacture of polyvinyl chloride (PVC). The next 

      largest  outlet  for  2-EH  is  for  the  manufacture  of  the acrylate esters  which  are  used  in                                                                                             2 

      adhesives  and  surface-coating  materials  such  as  acrylic  paints,  in  printing  inks  and  as 

      impregnating agents.  

ImageImageImageImageImageImageImageImageImageImageImageImageImageImage 

Image 

      According  to  Ashford’s  Chemicals  Dictionary  (2011),  the  production  of  2- Ethylhexanol 

      has  recorded  an average  annual  growth  rate of  2.5%  from  1986 – 2000.  The future of  2-

      ethylhexanol  demand  lies  in  the  demand  for  phthalates  such  as  DOP;  the  largest volume 

      phthalate ester; and  is expected to remain  flat or decline  slightly due to competition from 

      other phthalates and environmental pressure. An issue for 2-EH producers is that DOP has 

      been  dogged  by  health  hazard  and  environmental  concerns,  and  phthalates  in  general  are 

      under pressure. On the positive side, there is increasing demand for other derivatives of 2-

      EH, in particular 2-ethylhexyl acrylate. 

                                                                                             3 

      The  industrial production of 2-ethylhexanol  is  by a three-step process  involving the aldol 

      self-condensation of  n-butyraldehyde  followed  by dehydration  and  hydrogenation. The  n-

      butyraldehyde  was  originally  obtained  from  acetaldehyde  via  ethylene  but  this  has  been 

      superseded by the oxo process from propylene.  

      Today,  nearly  all  2-EH  is  produced  by  catalytic  hydroformylation  of  propylene  with 

      synthesis  gas  (carbon  monoxide  and  hydrogen).  The  catalytic  process  now  mostly  uses 

      rhodium catalysts rather than the older cobalt hydro carbonyl catalysts. 

      The esters of 2-Ethylhexanol with dicarboxylic acids are excellent plasticisers for synthetic 

      resins and rubbers and include phthalates, adipates and sebacates .Its main application is as 

    a feedstock in the manufacture of low volatility esters, the most important of which is di-

      (2-ethylhexyl) phthalate (DOP or DEHP). Other plasticizers that can  be obtained  from 2-

      Ethylhexanol are the corresponding ester of adipic acid and para- hydroxylbenzoic acid.  

      2-Ethylhexanol is also used as a solvent and has a particular niche use in the formation of 

      lacquers and coatings when slow evaporation is desired. 2-Ethylhexanol is also an excellent 

      defoaming  agent  for  use  in  the photographic,  varnish,  rubber  latex,  textile  printing  and 

      ceramic industries and can be used to advantage wherever foaming is undesirable.  

      2-Ethylhexanol is  manufactured  using  the  OXO  process  involving  hydroformylation  of 

      propylene to n-butyraldehyde followed by an Aldol condensation and reduction to produce 

    the ethyl hexanol. 

                                                                                             4 

      1.2 2- Ethylhexanol Properties and Uses 

      2-Ethylhexanol (2-EH) is a clear, colorless, mobile and neutral liquid with a characteristic 

      odor.  It  is  miscible  with  most  common  organic  solvents,  but  its  miscibility  with  water  is 

      very limited. It enters into the reactions that are typical for primary alcohols. For instance, 

    it  readily  forms  esters  with  various  acids. 2- Ethylhexanol is  the  oldest,  best  known  and 

      most widely used of the synthetically made higher aliphatic alcohols. 

      1.2.1 Physical and chemical properties 

      The distinct physical and chemical properties of 2-ethylhexanol are summarized in Table 2. 

      1.2.2 Environmental fate 

      During commercial operations, 2-ethylhexanol  is  typically released to the environment as 

    an  air emission  or  in  wastewater.  In  the  atmosphere,  vapor  phase  2-ethylhexanol  is 

      degraded  by  photochemically  produced  hydroxyl  radicals.  In  water,  2- ethylhexanol  will 

      volatilize  to  air  or  undergo  biodegradation,  it  is  not  expected  to  adsorb  to sediments  or 

      bioconcentrate in aquatic receptors. If released to soil 2- ethylhexanol will likely volatilize 

      from the surface or migrate to water, adsorption to soil is not significant.  

    A summary of the environmental fate and half-lives for 2-ethylhexanol is provided in Table 

    3 (HSDB,  2004). Appendix  B gives  the  Material  Safety  Data  Sheet  (MSDS) for  safe 

      handling of 2- Ethylhexanol. 

                                                                                             5 

      Table 2:  Physical and Chemical Properties of 2-Ethylhexanol (NIST, 2003) 

Property Value Reference 

Molecular Weight 130.23g/mol Verschueren, 2001 

Physical State Liquid Verschueren, 2001 

                                            o

Melting Point  -76 C              

                                              o

Boiling Point 183.5 C Verschueren, 2001 

Specific gravity (liquid) 0.8344 at 20˚Genium, 1999 

                                                      C 

Specific gravity (gas) (air=1) 4.49 Genium, 1999 

Vapour Pressure 0.05 mmHg at 20˚C Verschueren, 2001 

 0.20 mmHg at 20˚C Lewis, 1997 

Solubility Soluble in organic solvents Genium, 1999 

Solubility in water 880 mg/l at 25˚HSDB, 2004 

                                                        C 

 Verschueren, 2001 

                                          1000 mg/l at 20˚C 

                                                  53

Henry's Law Constant 2.65 x10- atm-m/mol          Genium, 1999 

Octanol water p

.

DESIGN OF PLANT FOR THE PRODUCTION OF 72000 TONNES/ YEAR OF 2- ETHYLHEXANOL FROM PROPYLENE AND SYNTHESIS GAS



TYPE IN YOUR TOPIC AND CLICK SEARCH.




TESTIMONIES FROM OUR CLIENTS


Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "Exceptionally outstanding. Highly recommend for all who wish to have effective and excellent project defence. Easily Accessable, Affordable, Effective and effective."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "I saw this website on facebook page and I did not even bother since I was in a hurry to complete my project. But I am totally amazed that when I visited the website and saw the topic I was looking for and I decided to give a try and now I have received it within an hour after ordering the material. Am grateful guys!"

    Hilary Yusuf, United States International University Africa, Nairobi, Kenya.
  • "Researchwap.com is a website I recommend to all student and researchers within and outside the country. The web owners are doing great job and I appreciate them for that. Once again, thank you very much "researchwap.com" and God bless you and your business! ."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • "researchwap.com is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Great User Experience, Nice flows and Superb functionalities.The app is indeed a great tech innovation for greasing the wheels of final year, research and other pedagogical related project works. A trial would definitely convince you."

    Lamilare Valentine, Kwame Nkrumah University, Kumasi, Ghana.
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much researchwap.com, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about researchwap.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing researchwap.com.