Title Page………………..iCertification……………iiDedication………………iiiAcknowledgment……….ivAbstract…………………viTable of content………vii

CHAPTER ONEINTRODUCTION1.1    Background of the Study1.2    Statement of Problem1.3    Objectives of the Study

CHAPTER TWOLITERATURE REVIEW2.1    Macrophytes Abundance and Distribution within different Landscapes.2.2    Physical and Chemical Habitat Characteristics of Aquatic Macrophytes2.2.1    Water transparency2.2.2    Water Movements2.2.3    Temperature2.2.4    Water Nutrient Content2.3    Influence of Hydrology on Wetland Vegetation2.4    Eutrophication and Ecophysiology of Wetland Plants 2.5    Nutrient Dynamics and Impact on Wetland plant species

CHAPTER THREEMATERIALS AND METHODS3.2    Vegetation and Soil Sampling3.3    Quantitative Determination of Vegetation Parameters3.3.1    Height3.3.2    Basal Area3.3.3    Girth Size3.3.4    Crown Cover3.3.5    Frequency3.3.6    Density3.4.1    Soil Sample Digestion3.4.2    Physical Analysis (Particle Size Analysis – Hydrometer method)3.4.3    Chemical Analysis     Electrical Conductivity (EC)     Determination of Organic Carbon3.4.3.3     Determination of Total Nitrogen3.4.3.4     Determination of Available Phosphorous3.4.3.5 Determination of Exchangeable Cations3.4.3.6      Determination of Exchangeable Acidity3.4.3.7      The Exchangeable Acidity (Me EA)       Effective Cation Exchange Capacity (ECEC)    Base Saturation:   Determination of Micronutrients3.5    Data Analysis

CHAPTER FOURRESULTS 4.1    Floristic Inventory of the Wetland4.2    Physical and Chemical Characteristics of the Sediment4.3    Influence of the Soil Factors on the Vegetation Components


CHAPTER ONEINTRODUCTION1.1    Background of the StudyWetlands are regarded as biodiversity isles because they support extensive food chains and rich biodiversity. In this sense, these ecosystems are important sites for conservation (Getzner, 2002). Almost 50% of the world’s wetlands have disappeared in the last century due to Agriculture and Urban Development (Shine and Klemm, 1999). In Europe, the situation is critical with the loss of almost 2/3 of wetlands by the beginning of the 20thcentury. (Santamarıa and Klaassen, 2002).Wetlands are important habitats for many species of plants and animals at both national and international levels (Hebb et al., 2013; Wetser et al., 2015). A contribution to our understanding of how a community is put together, how it works, what determines the relative proportions of community members, and their spatial and temporal relationships with each other might contain something of value for describing wetlands.Aquatic macrophytes, often also called hydrophytes, are key components of aquatic and wetland ecosystems. As primary producers, they are at the base of herbivorous and detritivorous food chains, providing food to invertebrates, fish and birds, and organic carbon for bacteria. Their stems, roots, and leaves serve as a substrate for periphyton, and a shelter for numerous invertebrates and different stages of fish, amphibians, and reptiles (Dvořák,1996). Biogeochemical processes in the water column and sediments are to a large extent influenced by the presence/absence and a type of macrophytes, and macrophytes can also have a profound impact on water movement and sediment dynamics in water bodies. Some macrophytes are of major importance for their direct contributions to human societies by providing food, biomass, and building materials (Engelhardt and Ritchie, 2001; Egertson et al., 2004; Bornette and Puijalon 2011). Good knowledge of the functions of aquatic macrophytes in wetlands and shallow lake ecosystems is critical for understanding the basic ecosystem processes. It is also important for numerous applied issues such as anthropogenic perturbations, wetland restoration, wastewater treatment, and management of invasive species (Lavoie, 2010; Casanova, 2011).Soils in wetlands are characterized by a high degree of spatial variability due to a combination of physical, chemical, and biological processes that operate with different intensities at different scales. These processes in wetland ecosystems include for example; surface run-off, erosion, overbank flooding, sediment deposition, groundwater inputs, fire, animal burrowing, litter production, and root activity (Bruland and Richardson, 2005). The distribution of plant species in wetlands varies along with different environmental conditions. For instance, flood-sensitive plants are usually distributed at higher-elevation sites because of their low tolerance to flooding, whereas flood-tolerant species usually occur at lower elevations (Luo et al., 2008). While some studies have shown that pedological attributes such as textural class, pH, and nutrients among others, play significant roles in regulating vegetation patterns (Ubom, et al., 2012; Kwon et al., 2007), others have shown that in studying macrophyte-environment used various techniques are used to assess aquatic macrophytes and most have reported measurements of diversity, richness, frequency, and community composition (Akasaka and Takamura, 2011).In view of the significant role played by macrophytes in freshwater ecosystems, understanding and quantifying the environmental factors that influence the distribution patterns of macrophytes is indispensable for integrated management practices of these ecosystems.

1.2    Statement of ProblemRiverine wetlands play important roles in Akwa Ibom State in supplying water for human consumption and agricultural production. For the past years, these ecosystems have been deteriorating because of increasing human perturbations leading to pollution, eutrophication, and plant destruction. The deterioration of this ecosystem has caused increasing concern and has been the subject of a number of studies. Also, most studies in Akwa Ibom State have generally focused on coastal wetlands most especially mangrove ecosystems. These studies have centered primarily on water quality and aquatic vegetation inventory.  Unfortunately, studies have rarely considered the relationships between the spatial distribution of vegetation and soil factors in riverine wetlands. This has led to the paucity of information on riverine wetland with regards to plant community composition as well as the influence of soil properties on plant distribution. If these were available, understanding the major environmental soil factors affecting or influencing wetland plant communities would have been made possible and these would have formed the basis for the conservation practices and future management of this ecosystem. The dearth of information in this regards further obliged this study.

1.3    Objectives of the StudyThe aim of this research is to assess the influence of soil properties on macrophyte abundance and distribution in a freshwater wetland. The specific objectives are to:i.)    document the macrophyte composition of the wetland.ii)    characterize the soil properties of the wetlandiii)    assess the influence of soil properties on vegetation components using cluster correlation analysis





Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • " is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing