Thermal conductivity of six samples was determined. Samples  are pure aluminium long span roofing sheets with red, blue, black, green and white colours. Giralle roofing sheet was also examined. The lees’ disc steady state method was used and the results show the thermal conductivity of the samples as follows;  254.609 + 0.0065 Wm-1k-1 for red, 207.253 + 0.0063 Wm-1k-1 for blue, 111.659 + 0.0058 Wm-1k-1 for black, 301.123 + 0.0055 Wm-1k-1green, 229.925 + 0.0053 Wm-1k-1 for white and 152.738 + 0.0055 Wm-1k-1 for giralle respectively. From these results, green coated sheets had the highest thermal conductivity value of 301.123 + 0.0055 Wm-1k-1 and black has the least thermal conductivity value of 111.659 + 0.0058 Wm-1k-1. It was further observed that the colour of coating affected the thermal conductivity of the samples and was therefore concluded that green is the most suitable sample for roofing and black is the least.

TABLE OF CONTENTSTitle Page                                      iCertification                                      iiDeclaration                                      iiiDedication                                     ivAcknowledgment vAbstract                                    viiTable of Contents                                viiiList of Tables                                  xiList of Figures                                        xCHAPTER ONEINTRODUCTION1.0    Introduction                                1    1.1    Purpose of the Study                        41.2    Aim and Objectives of the study                51.3    Significance of the study                        61.4    Scope of the Study                            6CHAPTER TWOREVIEW OF RELATED LITERATURE2.0    Review of related literature                    72.1    Temperature gradient                        72.2    Heat and Internal Energy                        92.3    Heat transfer mechanisms                    102.4    Heat flow                                102.5    Thermal Conductivity (K)                    122.7    Determination of Thermal Conductivity of a Conductor    172.8    Other thermal properties of materials                20CHAPTER THREEMATERIALS AND METHODS3.0    Materials and Research Methodology                233.1    Materials                                23    3.2    Sample Preparation                        233.3    Sample Analysis                            243.4    Determination of thermal conductivity (K) of Samples    25CHAPTER FOURRESULTS, ANALYSIS AND DISCUSSIONS4.0    Presentation of Experimental Results                304.1    Calculations and deductions from graphs or the temperature gradient of Samples                        334.2    Calculation of thermal conductivity of samples        344.3    Discussion of results                        36CHAPTER FIVESUMMARY, CONCLUSION AND RECOMMENDATION5.0    Summary                                385.1    Conclusion                                395.2    Recommendation                            40    References                                    AppendixCHAPTER ONE1.0    INTRODUCTIONThe topic of heat flow and of course, thermal transport within, a system is a matter of concern to all in the society.Scientists and non- scientists alike especially when it has to do with the basic needs of life; food, shelter and clothing.Thermal conduction and heat transfer is basically governed by thermal conductivity of the materials that make up a system. Heating process involves basically a transfer of thermal energy from one region to another (Etuk, Akpabio&Akpabio 2005). This transfer can take place in three ways namely; conduction, radiation and convection. It is therefore worthy of brief discussion for the purpose of completeness and refreshing the memory, the three primary methods of heat transmission earlier mentionedIn convection, heat is carried from one place to another by a physical agent such as fliud (liquid or gas). Conduction involves thermal agitation of molecules passed throughout a substance. In conduction, the average position of molecules remain the same, but not so with convection, though the two require material medium such as solid, liquid or gas for heat transmission, whereas, no material substance is required in the case of radiation, being wavelike mode of heat transfer in which heat is treated as electromagnetic waves.Thermal conduction is therefore a transport of heat energy from the warmer part to the colder part of the same body or from the warmer to the colder body in physical contact with each other without displacement of the particles of the body.Thermal conductivity, specific heat capacity and thermal diffusitivity are seen as the major important properties of materials, but thermal conductivity is particularly an important parameter to manufacturing devices expressing the relationship between the parameters thus;Image                        (1.1)WhereImageis the thermal conductivity of the material,Imageis the density of the material,d is the thermal diffusitivity andc is specific heat capacityAccording to Ababio (2003), aluminium is the third most plentiful element in the earth’s crust, being found abundantly as trioxosilicates (IV) in rocks and clays. The main source of aluminium is the mineral bauxite.Bauxite can be converted to aluminium oxide (alumina) through the Bayer process. The alumina is then converted to aluminium metal using electrolytic cells and the Hall – Heroult process. Its versatility makes it the most widely used metal after steel.Aluminuim is an execellent reflector of raiant energy, from ultraviolet to infrared. It has a visible light reflectivity of around 80%, which makes it widely used in light fixtures. It is its high reflectivity to visible light that makes aluminium roofing sheets come in various aesthetic patterns and colours.By exploiting combinations of its physical properties such as strength, lightness, corrosion resistance, recyclability and formidability, aluminium is being employed in an ever increasing number of applications. This array of products ranges from structural materials, roofing sheets through to thin packaging foils. It is also widely used in the manufacture of cooking utensils owing to its non-toxic nature and high conductivity.This work is designed to investigate the thermal conductivity (k) of roofing sheets made from aluminium and coated red, blue, green, black, white and giralle.1.1    PURPOSE OF THE STUDYThe purpose of this work is to determine the thermal conductivity of aluminium roofing sheets coated red, blue, black and white, and  ofgiralle pigments and use these values to determine whether or not the thermal conductivity is affected by the colour of coating.Furthermore, appropriate recommendations as to which colour is suitable for roofing will be made from the results.

1.2    AIMS  AND OBJECTIVES OF STUDYThe aim of this work is to determine the thermal conductivity of aluminium roofing sheets coated with red, blue, black and white. Giralle roofing sheet will also be examined.The specific objectives are;1.    To determine the thermal conductivity of the samples.2.    To determine which colour of coating is more suitable for roofing based on the thermal conductivity values.3.    To ascertain if the colour of coating has effect on the thermal conductivity of the samples.1.3    SIGNIFICANCE OF STUDYThis work is immensely important to the domestic and industrial setting. Amongst others, it will help determine the temperature comfortability of buildings with respect to the colour of coating of roofing sheets based on their thermal conductivity values.

1.4    SCOPE OF STUDYThis work is limited to;1.    Aluminium roofing sheets coated red, blue, green, black and white and having a thickness of 0.50mm.2.    Giralle roofing sheet coated black.3.    Only thermal conductivity of the samples are investigated. Other thermal properties are not considered.





Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • " is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing