The use of X-rays in medical diagnostic radiology has increased globally. The medical use of X-ray for diagnosis of illness is subject to the principles of justification and optimization for the protection of exposed individuals. Medical X-ray accounts for the largest exposure of humans to man-made ionizing radiation. Exposure of individuals can lead to long-term stochastic effects. Over exposure of humans in interventional procedures can also lead to deterministic effects such as skin burns in the short term. Even though, measures are put in place to protect the operators of the X-ray equipment, including radiologists, there are no systems to protect patients undergoing radiological examinations. To circumvent this problem therefore, this study was conducted to determine whether safety precautionary measures necessary for shielding patients contact to unsafe dose of radioactivity were being adhered to or not. The factors that affect patient protection include equipment performance, operator knowledge and skills in exposing the patient correctly to obtain the best diagnostic image with a minimum dose to the patient and monitoring and evaluation of patient dose to ensure consistency with Institutional Diagnostic reference level.  

To achieve the study objectives therefore, the level of protection patients received during simple radiographic examinations in the Korle-Bu Teaching hospital and the Ridge hospital, was evaluated. 

A cross-sectional study design was used in this research. A total of 175 participants were selected conveniently from the Korle-Bu Teaching and the Ridge hospitals. A selfadministered structured questionnaire was administered to obtain scientific and personal data. The entrance surface dose of radiation was measured using Multi-Purpose Detector. From the study, the performance indicator of protection measured was 1.6 (80%), Safety operations by management 1.06 (53%), Safety operations by radiographers 1.79 (89.5%), patients’ safety and knowledge 0.89 (44.5%), investigations and quality assurance 1.6 (80%), local rules and supervision 1.29 (64.5) and clinical dosimetry 1(50%). 

There were no radiation survey meters in both facilities. Radiographers did not weigh patients to estimate their doses. Majority of Physicians were unaware of the accepted exposure dose of various segments of the human body. Due to poor record keeping, enquiries of previous radiographic examinations from patients were not conducted. Finally, patients at Ridge Hospital were exposed to relatively higher doses of radiation even though both facilities were within the diagnostic reference range for Akwa Ibom. 



1.1 Background 

In November 1895, Von Rontgen of Wurzburg, Germany, discovered the X-ray while working with a Crookes’ tube (Berkeley, 1989). In 1896, Henri Becquerel also discovered radioactivity while working on X-ray (Radiation Protection Dosimetry, 2015). Radiology is the scientific use of X-rays and other high energy radiations for diagnosis and treatment (Sharma et al., 2016). Radioactive material or device is any substance that emits electromagnetic waves. The emission of electromagnetic particles is called radiation and the disintegration or breaking down of the atoms into ions is called ionization. Electromagnetic waves that are capable of disintegrating atoms into ions are known as ionizing radiations. 

The knowledge of the harmful effects of ionizing radiation has since been documented. However, accidents that result in people getting injured still persist irrespective of the considerable development in radiation safety (Bengtsson, 1978).  

Every material in nature has energy called the latent energy, which is an inherent property of the material. All materials have a fundamental elementary unit known as the atom. Each atom has subdivisions know as protons, neutrons and electrons. When the atoms of a particular substance have an unequal number of protons and neutrons, the substance is rendered unstable in electromagnetic energy and will therefore emit the excess energy in order to become stable. A radioactive material is therefore any substance that is unstable due to an unequal number of protons and neutrons and will release energy in a process called radioactive decay in order to be stable. 

Radiation protection is a term applied to concepts, requirements, technologies and activities that are aimed at protecting people (Cunningham et al., 2004). Diagnostic and interventional radiology, are vital parts of present day medical practice (Inkoom et al., 2012). Improvements in X-ray imaging technology, coupled with developments in digital technology have had a significant impact on the practice of radiology. This comprises improvements in image quality, reductions in dose and a broader range of available applications resulting in better patient diagnosis and treatment (Heath et al., 2011). Nonetheless, the basic principles of X-ray image formation and the risks related with X-ray exposures have not changed significantly. X-rays have the potential for destroying healthy cells and tissues; therefore, all medical procedures involving X-ray equipment must be carefully controlled. In all facilities and for all types of equipment, procedures must be in place to ensure that exposures to patients, staff and the public are kept as low as reasonable achievable (ALARA). 

Diagnostic X-rays account for a greater proportion of exposure of humans to ionizing radiations (Inkoom et al., 2012). On assessment of the global population dose of medical exposures to ionizing radiation from 1997 to 2007, the 2008 United Nations Scientific Committee on the effect of Atomic Radiation (UNSCEAR) reports that medical exposure continues to be the largest source of man-made exposure to ionizing radiation and it keeps growing substantially (Inkoom et al., 2012). Though individual doses associated with conventional radiography are mostly small, examinations concerning computed tomography and radioscopy can be significantly higher. However, a well-designed, installed and maintained X-ray equipment and the thorough use of appropriate procedures by trained operators reduce undue patients’ exposure without decreasing the value of medical information that is derived (Schandorf & Tetteh, 1998). Mostly, X-ray machine operators are aware of the problems associated with over exposures. However, the fundamental requirements are often not adhered to. 

Over exposure to X-ray beams, poor infrastructure and unnecessary X-ray referrals are among factors reported to cause high exposure dose to patients above international recommendations (Schandorf & Tetteh, 1998a; Schandorf & Tetteh 1998b). 

According to the 1998 report of UNSCEAR the need for radiation protection exists because exposure to ionizing radiation can result in damaging effects that manifest not only in the exposed individuals but also in their descendants. These effects are called somatic and genetic effects, respectively. Somatic effects are characterized by noticeable changes occurring in the organs of the exposed individual. The changes may appear within a few hours, or after many years, depending on the amount and duration of exposure to the individual (Harrison et al., 1983). Genetic effects however, are characterized by chromosomal damage in germ cells leading to mutation that give rise to genetic defects (abnormalities) such as leukemia (Akrobortu et al., 2013). Busch (1997) reported that, while the amount of dose of diagnostic radiation required to induce genetic defects may be small and may seem to cause no immediate noticeable damage, they are an equal cause for concern because of the ultimate consequences on the exposed individual. 

1.2 Problem statement

The regulations for use of ionizing radiations (IRs) in medicine and industry have been in existence for years now, however, some health professionals, X-ray operators and technicians are still unaware of these regulations. As such, the aforementioned individuals are often not compliant to such regulations (Kyei & Antwi 2015). The knowledge, awareness and adherence to these regulations are key to reducing the level of exposure to IRs and the associated deleterious consequences (Dewi et al., 2010). 

Secondly, most studies in radiology have focused on the protection of the worker through the use of dosimeter (Breitenstein & Seward, 2001). The perception is that, workers spend more time in areas of ionizing radiation and as such, it is they who need protection. For this reason, during simple radiographic examination, X-ray operators are stationed in a separate protected room, leaving the patient alone in an area that is charged with IR. 

Finally, since institutional health and safety practices stipulate that healthcare facilities should be places for acquiring quality healthcare rather than contracting diseases (Brennan et al., 1991), it is imperative to set up safety measures to protect patients undergoing radiographic procedures or examinations. 

 1.3 Justification 

X-rays are very useful in diagnosis and treatment of diseases. However, they are ionizing radiations and can therefore lead to various deleterious health outcomes such as cancers especially when there is over exposure during radiological examinations. In view if this, the findings of this study would enhance accreditation and regular monitoring of X-ray facilities to ensure that only qualified personnel and good equipment are used in radiological examinations necessary to ensure protection of patients against unsafe doses of X-ray. 

Also, findings from this research would add to the knowledge of the roles that owners of Xray machines ought to possess in order to ensure protection of clients against harmful dose effects ionizing radiations. This will also serve as a protocol to be followed during employment of qualified personnel and the procurement of certified equipment in radiological examinations. 

Furthermore, this study would provide critical knowledge on the need for X-ray facilities to be manned/operated by only technically qualified personnel who regularly undertake refresher courses in order to ensure that patients are exposed to only safe doses of X-ray during radiological examinations. 

Lastly, this study would provide the critical evidence needed to support the importance of standardized and regularly maintained X-ray equipment and functional radiation monitoring and control system in administering safe doses of X-ray necessary to protect patients against excessive radiation exposure. 

1.4 Research questions 

1. Do X-ray facilities at the Korle-Bu Teaching and Ridge hospitals meet International safety standards set for patients? 

2. Do Radiographers at the Korle-Bu Teaching and Ridge Hospitals have adequate training and certification? 

3. Are patients at the Korle-Bu Teaching and Ridge Hospitals exposed to safe ionizing radiation doses that are consistent with international safety standards? 

4. Are physicians at the Korle-Bu Teaching and Ridge Hospitals aware of the harmful effects of X-rays? 

1.5 General Objective      

To investigate the level of protection for patients against unsafe levels of radiation doses during radiological examination in X-ray facilities in Uyo

1.6 Specific Objectives 

1. To assess safety standards at the X-ray facilities in Korle-Bu Teaching and Ridge 


2. To assess the level of training and certification of radiographers at the X-ray 


3. To determine the actual doses of ionizing radiation that patients are exposed to during radiological examination at the Korle-Bu Teaching Hospital and Ridge Hospital. 

4. To assess the knowledge of physicians on the hazardous effect of X-rays on patients during radiological examination 

1.7 Conceptual framework 

Figure 1 describes the conceptual framework for this research 

Legal owners of X-ray facilities set up rules and regulations that ensure reduction in exposure of patients against radiation. These legal owners also ensure that qualified X-ray machine operators are employed. Periodically, they also advocate for in-service training to increase the knowledge of X-ray technicians, which also help in the reduction in exposure of patients to IR. Legal owners put in place systems to keep records of the patients’ histories at the X-ray facilities. This ensures that technicians keep records of previous encounters, thus reducing unnecessary and repeated examinations. Such practices reduce the long-term effect of patient’s exposure to ionizing radiation. Patients, who are also knowledgeable in radiation related issues are also better equipped to protect themselves from unnecessary exposure to IR by observing and adhering strictly to instructions given. 

Safety features at the radiological department are also necessary to prevent overexposure of patients to ionizing radiations. Physicians also justify X-rays in patients before they are taken. Lastly, when legal owners ensure quality assurance, there is reduction in exposure of clients to IR in the radiological departments.  



RESEARCHWAP.COM is an online repository for free project topics and research materials, articles and custom writing of research works. We’re an online resource centre that provides a vast database for students to access numerous research project topics and materials. guides and assist Postgraduate, Undergraduate and Final Year Students with well researched and quality project topics, topic ideas, research guides and project materials. We’re reliable and trustworthy, and we really understand what is called “time factor”, that is why we’ve simplified the process so that students can get their research projects ready on time. Our platform provides more educational services, such as hiring a writer, research analysis, and software for computer science research and we also seriously adhere to a timely delivery.


Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "Exceptionally outstanding. Highly recommend for all who wish to have effective and excellent project defence. Easily Accessable, Affordable, Effective and effective."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "I saw this website on facebook page and I did not even bother since I was in a hurry to complete my project. But I am totally amazed that when I visited the website and saw the topic I was looking for and I decided to give a try and now I have received it within an hour after ordering the material. Am grateful guys!"

    Hilary Yusuf, United States International University Africa, Nairobi, Kenya.
  • " is a website I recommend to all student and researchers within and outside the country. The web owners are doing great job and I appreciate them for that. Once again, thank you very much "" and God bless you and your business! ."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • " is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Great User Experience, Nice flows and Superb functionalities.The app is indeed a great tech innovation for greasing the wheels of final year, research and other pedagogical related project works. A trial would definitely convince you."

    Lamilare Valentine, Kwame Nkrumah University, Kumasi, Ghana.
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing