QUALITY CHARACTERISTICS OF UNDERGROUND WATER RESOURCES IN NKANU EAST AND NKANU WEST LOCAL GOVERNMENT AREAS OF ENUGU STATE, NIGERIA.                                                                   ABSTRACT:                           Physicochemical and bacteriological analyses of underground water resources in Nkanu East and Nkanu West Local Government Areas of Enugu state,  Nigeria were carried out to evaluate the potability and quality of the rural water supplies and to provide baseline data for future quality assessment. Underground water samples were collected from ten different boreholes in Nkanu East and Nkanu West LGAs. The parameters measured include temperature, colour, pH, electrical conductivity, turbidity, total dissolved solids, total hardness, calcium hardness, magnesium hardness, total alkalinity, chloride, sulphate, phosphate, nitrate, sodium, potassium, lead, chromium, copper, cadmium, nickel, iron, zinc and total coliform. The water showed near neutral pH (6.4- 8.2) favourably comparable to the WHO recommended range of 6.5-8.5, with moderate permanent hardness of 2.5-289 mg/L. Conductivity and total dissolved solids values for Amechi Idodo (4360 μs/cm, 2650 mg/L) and Mbulu Owo (4880 μs/cm, 2930 mg/L) were higher than the WHO guideline values of 1660 μs/cm and 1000 mg/L, respectively. Concentrations of most trace metals and all anions were below the WHO guideline values. However, iron,cadmium and chromium occurred at levels slightly above the WHO permissible limit. Total coliform count in Amechi Idodo and Mbulu Owo exceeded the WHO guideline value of zero. The underground waters studied are good for drinking provided they are boiled to remove microbial contamination. TABLE OF CONTENTS Title Page        i    Approval Page        iiCertification        iiiDedication        ivAcknowledgement        vAbstract        viTable of Contents          vii     List of Tables        xi    List of Figures        xiiCHAPTER ONE1.0    Introduction        11.1 Underground water quality        11.2 Background of Study        21.3 Scope of Study        31.4 Objective of Study        4CHAPTER TWO2.0    Literature Review        52.1 Water        52.1.1 Properties of water        52.1.2 Uses of Water         62.2 Types of water resources        72.2.1 Underground water        72.2.2 Surface water        82.2.3 Water in the atmosphere        122.3 Pollution         122.3.1 Water pollution Organic pollutants Inorganic pollutants Sediments pollutants Radioactive materials Thermal pollutants         172.3.2 Underground water pollution/pollutant Point-source pollution Non-point source pollution Chemical pollution Biological pollution Physical/Natural pollution         242.4 Water Analysis         252.4.1 Physical examination Temperature Turbidity pH Total dissolved solids Conductivity Colour        282.4.2 Chemical examination Hardness Alkalinity        302.4.2.3 Calcium        302.4.2.4 Magnesium        312.4.2.5 Chloride        312.4.2.6 Nitrate        312.4.2.7 Phosphate        322.4.2.8 Potassium        322.4.2.9 Sulphate        332.4.2.10 Sodium        332.4.2.11 Cadmium        342.4.2.12 Chromium        352.4.2.13 Copper        362.4.2.14 Iron        372.4.2.15 Lead        382.4.2.16 Nickel        382.4.2.17 Zinc        392.4.3 Microbiological examination     `    39CHAPTER THREE 3.0    Materials and Methods         413.1 Sample collection        413.2 Method of analysis         433.2.1 Turbidity         433.2.2 Temperature         433.2.3 Colour        433.2.4 Total dissolved solid         433.2.5 pH        443.2.6 Conductivity        443.2.7 Total alkalinity        443.2.8 Total hardness        453.2.9 Calcium        463.2.10 Magnesium        473.2.11 Chloride        473.2.12 Nitrate        483.2.13 Sulphate        493.2.14 Phosphate        493.2.15 Sodium        503.2.16 Potassium        503.2.17 Heavy metals determination         513.2.18 Bacteriological examination        52CHAPTER FOUR4.0 Results and Discussions        534.1 Turbidity        554.2 Colour        554.3 Conductivity        574.4 Total dissolved solid        574.5 pH        584.6 Total hardness, calcium hardness and magnesium hardness        594.7 Total alkalinity        614.8 Nitrate        624.9 Phosphate        624.10 Sulphate        634.11 Chloride        634.12 Sodium and potassium        644.13 Heavy metals        674.14 Total coliform        69Conclusion and Recommendation         69References         71CHAPTER ONE1.0    Introduction1.1 Underground water qualityWater is the matrix of life and forms the bulk of the weight of the living cells. The resources of usable water have been diminishing and are unable to meet the variety of needs of modern civilization. Water as the carrier of pathogenic microorganisms, can cause immense harm to public health. Waterborne diseases include typhoid and paratyphoid fever, dysentery and cholera, polio and infectious hepatitis [1].     Many developing countries are witnessing a stage of development where water from shallow wells and boreholes are gradually supplementing the original sources of drinking water (surface water). The preference for underground water to surface water is borne out of the belief that before underground water can be distributed as tap water it must always be subjected to some purification, while in practice, underground waters are filtered by natural processes as they pass through columns of soils, sands, strata, or sedimentary layers of rocks and are usually clear of solid materials as they come from the aquifer, particularly if they are deep seated ones. The intricate pore spaces or water passage ways of the aquifer materials act as a fine filter and remove small particles of clay or any other fines [2]. Organic materials decay or are destroyed in transit. Thus, the dirtiest and most polluted sewage water may become clear of suspended/particulate solid materials once it has gone through a thick bed of sand or geologic and pedologic units. As a result of this natural self-cleansing of polluted water by deep-seated aquifers, physical and biological aspects of pollution may not pose serious problems in underground waters [2].    Thus, underground water may not be treated before use and is believed to be free from pollution. In spite of all this, underground waters may have pollutants that not only depend on the geology, pedology, and mineralogy of the formations it flows through but also on the constituent pollutants/contaminants in the water that recharges the underground water. Unsatisfactory colour and taste are easily detected and are good indicators for underground waters of poor quality. Some underground waters taste of iron, others may have a disagreeable odor. Borehole waters must, as a rule, be analyzed for chemical contaminants before the water is distributed and supplied to households [2].1.2 Background of Study       The area of study is Nkanu East and Nkanu West. A Local Government Area in Enugu State, Nigeria, Nkanu  East  borders  Ebonyi State to the east. Its Headquarters is Amagunze. It is a rural area with a population of about 148, 774 and land mass of approximately 795 km2.. Nkanu West has its Headquarters at Agbani. It has an area of 225 km2 and a population of 146,695. The major occupation in these areas is farming. The various communities making up the two local government areas live in small villages, which still have considerable natural surroundings. Although there are springs and streams, most of the communities rely on boreholes for their water supply due to proximity and modernity [3].     Due to increased use of fertilizers and pesticides in this areas part of which is leached into the underground water through the soil, there is increased risk of pollution of these boreholes. Enugu, the state of study was previously mined for coal and underground water pollution is an ever present risk in areas of mining. Also most of the people use pit toilets which are sources of underground water pollution [2]. 1.3 Scope of Study    Samples of water from ten boreholes in the two LGAs specifically in Amechi Idodo, Mbulu Owo, Umueze, Agbani, Ugbawka, Isiogbo Nara, Akpugo, Amurri, Nara Unateze and Amodu Awkunanaw are to be collected. Physicochemical, bacteriological and trace metal analysis comprising of temperature, colour, pH, electrical conductivity, turbidity, total dissolved solids, total alkalinity, total hardness, calcium, magnesium, chloride, nitrate, phosphate, sulphate, sodium, potassium, total coliform, lead, copper, zinc, chromium, cadmium, and nickel are to be undertaken and values obtained are to be compared with World Health Organization (WHO) guideline values. 1.4 Objective of Study    There are yet no reported physicochemical or bacteriological studies of underground water resources in Nkanu East and Nkanu West Local government Areas. Therefore we set out to analyze borehole water samples from these areas in order to ascertain the potability and safety of the water by comparing the concentration levels with set standards and to procure the present quality status as baseline data for future periodic monitoring of the underground water quality in this area.





Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • "researchwap.com is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much researchwap.com, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about researchwap.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing researchwap.com.