DESIGN OF AN ADDITIONAL PASSWORD SECURITY TO MICROSOFT WINDOWS OPERATING SYSTEM


DESIGN OF AN ADDITIONAL PASSWORD SECURITY TO MICROSOFT WINDOWS OPERATING SYSTEM                                                                                                               TABLE OF CONTENTSTitle Page    -    -    -    -    -    -    -    -    -    Approval Page    -    -    -    -    -    -    -    -    Declaration    -    -    -    -    -    -    -    -    Dedication    -    -    -    -    -    -    -    -    -    Acknowledgement    -    -    -    -    -    -    -    Abstract    -    -    -    -    -    -    -    -    -    Table of Contents    -    -    -    -    -    -    -    CHAPTER ONE – INTRODUCTION1.1    Background of the Study    -    -    -    -    -    1.2    Statement of the Problem    -    -    -    -    1.3    Objectives of the Study    -    -    -    -    -    -    1.4    Research Questions    -    -    -    -    -    -    1.5    Research Hypothesis    -    -    -    -    -    -    1.6    Significance of the Study    -    -    -    -    -    1.7    Scope of the Study    -    -    -    -    -    -    1.8    Limitations of the Study    -    -    -    -    -1.9    Definition of Terms    -    -    -    -    -    -    CHAPTER TWO – REVIEW OF RELATED LITERATURE2.1    Introduction    -    -    -    -    -    -    -    2.2    Theoretical Framework    -    -    -    -    -    2.3    Conceptual Framework    -    -    -    -    -    2.4    Empirical Review    -    -    -    -    -    -CHAPTER THREE – RESEARCH METHODOLOGY3.1    Introduction    -    -    -    -    -    -    -    3.2    Research Design    -    -    -    -    -    -    3.3    Population of Study    -    -    -    -    -    -    3.4    Sample size and Sampling Techniques    -    -    -    3.5    Method of Data Collection    -    -    -    -    -    3.6    Research Instrument3.7    Validity of the Instrument    -    -    -    -    -    3.8    Reliability of the Instrument    -    -    -    -    3.9    Sampling Method    -    -    -    -    -    -    CHAPTER FOUR – DATA PRESENTATION AND ANALYSIS4.1    Introduction    -    -    -    -    -    -    -    4.2    Data Presentation and Analysis    -    -    -    -    4.3    Testing Hypothesis    -    -    -    -    -    -    CHAPTER FIVE – SUMMARY, CONCLUSION AND RECOMMENDATION5.1    Summary    -    -    -    -    -    -    -    -    5.2    Conclusion    -    -    -    -    -    -    -    -    5.3    Recommendations    -    -    -    -    -    -        References -    -    -    -    -    -    -    -    Appendix    -    -    -    -    -    -    -    -CHAPTER ONEINTRODUCTION1.1    BACKGROUND OF THE STUDYMulticast sessions are expected to be a common form of traffic in emerging mobile ad hoc networks. However, the recently developed theory for fair resource allocation in Mobile Ad Hoc Networks (MANETs) (Lin & Shroff 2004; Eryilmaz & Srikant 2005, 2006; Stolyar 2005, 2006; Neely et al. 2005) only addresses the case of unicast flows. Other than developing appropriate notation, it is somewhat straightforward to extend the theory to multicast sessions if one assumes that data is delivered to all the receivers in a multicast group at the same rate. Such a form of multicast is called single-rate multicast. On the other hand, there are many video applications which allow layered-transmission so that different receivers can subscribe to different numbers of layers and receive different qualities of the same video, depending upon the congestion level in their respective neighborhoods. Moreover, in wireless networks, due to varying signal strengths at different receivers, it may not be desirable or feasible to deliver data at the same rate to all the receivers in a multicast group. Thus, it is important to extend the optimization-based theory to handle multi-rate multicast sessions, i.e., multicast sessions where different receivers are allowed to receive at different rates. Such an extension is not immediate as in the case of single-rate multicast.In the last few years there has been significant growth in the area of wireless communication. Institute of Electrical and Electronics Engineering (IEEE) 802.16 (WiMAX) is the network which is designed for providing high speed wide area broadband wireless access. It consists of a base station (BS) and multiple subscriber station (SSs). BS transmits data to the SSs through broadcast channel. The SSs are linked to BS through multiple access channels. IEEE 802.16 standard utilize new nodes called relay stations (RSs). The RSs relay data between the BS and the SSs in upward and downward direction. WiMAX is an emerging wireless technology for creating multi-hop Mesh network. Future generation networks will be characterized by variable and high data rates, Quality of Services (QoS), seamless mobility both within a network and between networks of different technologies and service providers. A technology is developed to accomplish these necessities is regular by IEEE, is 802.16, also called as WiMAX (Worldwide Interoperability for Microwave Access). WiMAX supports Long range connectivity, High data rates, High security, Low power utilization and Excellent Quality of Services and squat deployment costs to a wireless access technology on a metropolitan level.Due to broadcast nature of the wireless medium, multicasting do not need more resources compared to unicasting. Multicast is used to transmit the data from the source to multiple receivers. It is useful because it allows the construction of truly distributed application, and provides important performance optimizations over unicast transmission. There are a number of existing applications for real-time audio and video conferencing which can make good use of a multicast service when it is available. Due to heterogeneous channel conditions, each recipient may experience different bit error rates and the amount of resources required may vary for each recipient. Most modern technologies utilize adaptive modulation and coding scheme to suit the channel conditions. When there are more recipients to serve, the sender tends to consume more resources. Since the wireless medium has limited resource, it is not always possible to provide multicast services for all the subscriber stations. Within the resource budget of a multicast service, resource utilization should be done to serve as many recipients (i.e., SSs) as possible. WiMAX provides better platform for Multicast. When a network only consists of a BS and SSs, this maximization can be done by allocating the entire resource budget to the BS. However, if RSs are considered, this problem becomes much difficult because resource should be allocated among the BS and RSs.1.2    PROBLEM STATEMENT OF THE STUDYHowever, the time-varying nature of the wireless environment, coupled with different channel conditions for different users, poses significant challenges to allocate shared resource in a fair manner among users. Moreover, the lack of availability of channel and arrival statistics further complicates the solution.1.    Unlike Ethernet, most traffic in 802.11 is sent reliably using ACKs and NACKs so that radio interference doesn't cause unbearably high packet loss. However, multicast packets are sent once and are not acknowledged, so they are subject to much higher loss rates.2.    Another issue with multicasting is that multicast frames experience lower quality of service. With 802.11 networks, lower throughput will definitely be the case when one or more of the wireless clients are using the 802.11.1.3    AIM OF THE STUDYThe aim of this study is to develop a system that would allocate resources evenly over a wireless network during multicast sessions.1.4    OBJECTIVES OF THE STUDY·    To solve routing issues that arises during the sending of multicast packets over a wireless network.·    To develop a wireless network that reduces congestions during multicast sessions.·    To reduce minimum power multicasting problems.·    To allocate resources fairly using a resource algorithm during multicast sessions.·    To improve the quality of service during multicast sessions.1.5    SIGNIFICANCE OF THE STUDYThis study aims to use multicasting, meaning delivery of information using multicast packets, to conserve the bandwidth of a network because only the transmission of a single packet is necessary rather than sending packets individually addressed to each node. This is especially important with wireless networks having limited throughput available.1.6    SCOPE OF THE STUDYThis study covers the allocation of resources over a wireless network, during multicast sessions; it does not include wired networks and other routing sessions.

.

DESIGN OF AN ADDITIONAL PASSWORD SECURITY TO MICROSOFT WINDOWS OPERATING SYSTEM



TYPE IN YOUR TOPIC AND CLICK SEARCH.




TESTIMONIES FROM OUR CLIENTS


Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • "researchwap.com is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much researchwap.com, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about researchwap.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing researchwap.com.