CHARACTERIZATION OF PYROLYTIC BIOFUEL PREPARED FROM BIOMASS OF Ceiba pentandra and Melicia excelsa

Click Here To Get The Complete Project »

CHARACTERIZATION OF PYROLYTIC BIOFUEL PREPARED FROM BIOMASS OF Ceiba pentandra and Melicia excelsa  

ABSTRACT  

Wood wastes residues collected at sawmill along Benin Ilesha expressway in Akure Ondo State (Ceiba pentandra, Melicia excelsa and mixture of Ceiba pentandra, and Melicia excelsa) ratio 50:50 were converted to liquid bio-fuel via slow pyrolysis process at three different temperatures, 450° C, 550° C and 650° C. The physical characteristics of the liquid bio-fuel viz; oil yield, volume, density, viscosity, pH were determined. The proximate values of the feedstocks (volatile matter, ash content, and fixed carbon) were determined. The pyrolytic oil yield for Ceiba pentandra, Melicia excelsa, and a mixture of Ceiba pentandra, Melicia excelsa ranged from 17.67 % to 46.72 %, 16.33 % to 43.73 % and 16.72 % to 43.96 % respectively. Meanwhile, an increase in temperature indicates an increase in oil yield and decrease in percentage char. The mean value for the charcoal produced ranged from 32.01 % to 47.17 % with Ceiba pentandra species having the highest charcoal produced at 450° C. The highest viscosity (87.08±2.88) was recorded for Melicia excelsa at 650° C. The heating value of the feedstocks used in this study ranged from 3305.59±67 to 33173±34.36 KJ/kg which indicates high heating value as good combustion properties that can guarantee safe handling of the Pyrolytic liquid produced from the feedstocks.

 

                                TABLE OF CONTENTS TITTLES                                                                                                                                                                  PAGES ABSTRACT .................................................................................................................................... ii DEDICATION ............................................................................................................................... iii ACKNOWLEDGEMENT ............................................................................................................. iv CERTIFICATION ......................................................................................................................... vi TABLE OF CONTENTS .............................................................................................................. vii LIST OF TABLES ........................................................................................................................ xii LIST OF FIGURES ..................................................................................................................... xiii LIST OF PLATES ....................................................................................................................... xiv CHAPTER ONE 1.0 INTRODUCTION .................................................................................................................... 1 1.1 Statement of problem ................................................................................................................ 2 1.2. Objectives ................................................................................................................................ 3 1.3. Scope of the Study ................................................................................................................... 3 1.4. Justification .............................................................................................................................. 4                                               vii  CHAPTER TWO 2.0. LITERATURE REVIEW ........................................................................................................ 5 2.1 Biofuel as alternative source of energy ..................................................................................... 5 2.1.1 Generation of Biofuel ................................................................................................... 6   2.1.1.1. First generation of biofuels ........................................................................................ 6   2.1.1.2 Second generation biofuels ....................................................................................... 6   2.1.1.3 Third generation biofuels .......................................................................................... 7   2.1.1.4 Fourth generation biofuels ........................................................................................... 7 2.1.2 Types of biofuel ................................................................................................................. 8   2.1.2.1 Ethanol......................................................................................................................... 8   2.1.2.2 Biobutanol ................................................................................................................... 8   2.1.2.3 Biodiesel ...................................................................................................................... 9 2.2 Sustainable production of biofuel ............................................................................................. 9 2.2.1 Plants used as sustainable biofuel .................................................................................... 10   2.2.1.1 Sugarcane .................................................................................................................. 10   2.2.1.2 Jatropha ..................................................................................................................... 10   2.2.1.3 Pongamia Pinnata ...................................................................................................... 10                                             viii  2.2.2 Wood as a source of energy ............................................................................................. 11 2.3 Pyrolysis .................................................................................................................................. 11 2.3.1. Pyrolysis processes for biomass.......................................................................................... 12 2.3.2 Principles of fast pyrolysis ............................................................................................... 13 2.3.3. Feedstock preparation for pyrolysis ................................................................................ 13 2.3.4 Pyrolysis process technologies ......................................................................................... 14   2.3.4.1 Fixed Bed Reactor ..................................................................................................... 14   2.3.4.2 Ablative Processes ..................................................................................................... 14   3.3.4.3 Fluidized gas .............................................................................................................. 15   2.3.4.4 Circulating Fluidized Beds ........................................................................................ 15 2.4 Characteristic of pyrolysis liquid-bio-Oil ............................................................................... 16 2.5 Applications of bio-oil ............................................................................................................ 16 2.6 Products and their characteristics............................................................................................ 16 2.7 Biomass pyrolysis production related to biomass composition .............................................. 17 2.8 Meaning of terms .................................................................................................................... 18 2.8.1 Viscosity ........................................................................................................................... 18 2.8.2 pH value ........................................................................................................................... 18                                             ix  2.8.3 Flashpoint ........................................................................................................................ 18 2.8.4 Ash content ....................................................................................................................... 19 2.8.5 Heating value.................................................................................................................... 19 CHAPTER THREE 3.0 METHODOLOGY ................................................................................................................. 20 3.1 Sample collection .................................................................................................................... 20 3.2. Experimental set-up ............................................................................................................... 20 3.3. Sample preparation ................................................................................................................ 20 3.4 Physical properties determination ........................................................................................... 21 3.4.1 Viscosity determination.................................................................................................... 21 3.4.2 pH determination .............................................................................................................. 21 3.4.3 Density determination ...................................................................................................... 22 3.5 Proximate analysis .................................................................................................................. 22 3.5.1 Percentage volatile matter ................................................................................................ 22 3.5.2 Percentage ash content ..................................................................................................... 23 3.5.3 Percentage fixed carbon ................................................................................................... 23 3.5.4 Flashpoint test ................................................................................................................. 24                                             x  3.6 Statistical analysis: analysis of variance for physical properties of pyrolytic oil ................... 24 CHAPTER FOUR 4.0 RESULT AND DISCUSSION ............................................................................................... 29 4.1 Physical properties of pyrolytic oil ......................................................................................... 29 4.1.1. Percentage pyrolytic oil yield (%) ................................................................................... 29 4.1.2 Charcoal produced............................................................................................................ 30 4.1.3. Volume of pyrolytic oil yield .......................................................................................... 34 4.1.5. the pH of  pyrolytic oil .......................................................................................................... 37 4.1.6. Viscosity of Pyrolytic oil ................................................................................................ 39 4.2. Flashpoint of pyrolytic oil produced ................................................................................. 41 4.3. Proximate analysis and heating values of the three selected sawmill wood residues ........ 43 4.4. % oil yield, charcoal produced, and Noncombustible gas with variation in temperature. .... 48 CHAPTER FIVE .......................................................................................................................... 49 5.0 CONCLUSION ....................................................................................................................... 49 REFERENCES ............................................................................................................................. 50  CHAPTER ONE 1.0 INTRODUCTION Energy  is  generated  from  various  sources  which  include  renewable  sources  that  could  be replenished in a short period of time, such as solar, wind, geothermal, biomass, and hydropower. Energy could also be  from  nuclear  source  through  fission  and  fusion  of  nuclear  materials. Furthermore, energy could also be produced from nonrenewable sources (fossil fuel) like coal, oil and natural gas. These resources often exist in a fixed amount, or are consumed much faster than nature can recreate them because it takes millions of years to form naturally and cannot be replaced as fast  as they  are being  consumed. Those sources of energy  cannot  be recreated in  a short  period  of time  when  used  up.  However,  we  get  most  of  our  energy  from  non  renewable energy sources (fossil fuel). Fossil fuel is a non renewable resource that cannot be produced, re-grown, regenerated, or reuse on a scale which can sustain its consumption rate.  In spite of the limited supply from this source of energy, the rate at which it is being exhausted increases  on  a  daily  basis,  therefore  leading  to  a  rapid  depletion  of  fossil  fuel.  A  shortage  of energy is therefore envisaged which may become constrain to human development and economic growth. This has stimulated the quest for alternative source of energy from renewable resources to  produce  electricity,  drive  automobile  and  farm  machines.  Bio  fuels  have  been  identified  as important source of renewable energy that can complement the use of fossil fuels. Biomass fuel is a term used for a wide variety of fuels originating from dry matter of biological products. In the broadest sense the term is used to indicate fuels from chicken litter, bone meal, grasses  and  wood.    In  co-firing  applications  the  use  of  biomass  is  mostly  limited  to  woody biomass.  The  focus  of  this  study is  therefore  limited  to  woody  biomass  and  in  the  rest  of  this                                             1  study the  term  biomass  is  referring  only  to wood. Biomass  is  material  derived  from  recently living  organisms.  This  include  plants,  animals  and  their  by  products.  For  example,  manure, garden waste and crop residues are all sources of biomass. It is a renewable energy source based on the carbon cycle, unlike other natural resources such as petroleum, coal and nuclear fuel.   Biofuels are  produced  from  biological carbon source; the  most  common  sources  are photosynthetic  plants.  Biofuels  are  renewable  and  environment friendly  when  compare  with fossil fuel  that increases environmental pollution. Various plants  materials are used  for biofuel manufacturing.  They  are  also  used  as  solid  biofuel  for  heating  and  cooking.  One  of  the technologies used for the production of biofuel is the pyrolysis of biomass.  Pyrolysis is the thermal degradation of wood in complete absence of oxygen. Fast pyrolysis of biomass is one of the most promising technologies in the last two decades for producing biofuel (Manyele  2007)  Fast  pyrolysis  is  a  biomass  conversion  system  that  offers  high  yield  of  liquid product that can be used directly or upgraded. Virtually any form of biomass can be considered for  fast  pyrolysis,  ranging  from  Agricultural  waste  such  as  straw,  olive  pits  and  nutshell  of energy crops as well as forest operations residues such as bark, thinning and other solid wastes. This research work would emphasis the pyrolysis of sawmill wood residues. The characteristics of  the  liquid  would  therefore  be  carefully  defined  and  investigated  in  term  of  chemical characterization 1.1 Statement of problem Fossil fuel supplies are finite and exhaustible, they are fast depleting as they are being exploited from  their  sources  and  are  going  into  extinction  (Zerbe  1985)  Fossil  fuel  production  and utilization  threaten  the  environment  and  human health  in  myriad  ways  from  the  destruction  of                                             2  fishing grounds by oil spills to higher health care costs due to air pollution and the massive costs that will be imposed on current and future generation by global warming.   There is a need to identify sustainable energy options for energy production without polluting the environment.  The renewable energy source can  play  a major role for sustainable development. Among  the  possible  renewable  energy  options  are  agricultural  and  forestry  residues  (generally called biomass residues) which can be used as raw materials to generate energy (Encinar et al., 1996). 1.2. Objectives  The general objective is to convert wood residues to Pyrolytic bio oil at high temperature.   The specific objectives are:   ·  To  determine  the  time  and  quantity  of pyrolytic  oil  produced  during  pyrolysis  of  pure       waste of Ceiba pentandra, melicia excelsa and mixture of Ceiba pentandra, and melicia       excelsa at 450° C, 550° C and 650° C respectively.   · To determine whether the yield from the mixture of the two species will be better than the       yield from the pure species without mixture   · To investigate the combustion and physical properties in the pyrolytic oil produced such     as the pH, viscosity, density, flash point and proximate analysis. 1.3. Scope of the Study   The  scope  of  this  study  covers  the  pyrolytic  conversion  of  sawmill  wood  residues  of  two different species which are melicia excelsa and Ceiba pentandra at 450° C, 550° C and 650° C to                                             3  liquid  bio-oil.  The characterization  of  the  wood  liquid  would  be  investigated  and  evaluation would be made for the heating value of the feedstock. 1.4. Justification There  have  been  studies  that  prove  the  many  benefits  of  substituting  fossil/traditional  fuels (petroleum, etc) with biofuels such as biodiesel and ethanol. In its simplest sense, such biofuels are  biodegradable  which  means  they  are  derived  from  organic  materials.  They  are  naturally renewable.  It  can  create  numerous  jobs  since  our  own  farmers  can  practically  make  them domestically.  Consequently, our reliance on fossil fuels will be significantly reduced. Moreover, these biofuels emit non-toxic and cleaner emissions in comparison to traditional fuels. These alternative fuels also  do  not  promote  global  warming,  since  the  carbon  they  emit  is  taken  back  to  the environment.  Besides  global  production  of  biofuels  is  booming,  as  higher  oil  prices  and technological breakthroughs have made it a more profitable business. The first generation biofuel uses  wheat,  starch,  sugarcane,  rapeseed,  cassava,  among  other  as  feedstocks  in  production  of biofuel and this had caused and reduced food shortage globally. In light  of this, saw dusts that are  to  be regarded  as  waste  in  many  sawmill wood industries can  be  use  as alternative  to agricultural  products  for producing biofeul  to  prevent  food insecurity  resulting from  the use of agricultural products as biofeul.    

.

Click Here To Get The Complete Project »